Previously on 95-865...

What is PMI Measuring?

Probability of A and B co-occurring

if equal to 1
$\rightarrow A$, B are indep.

Probability of A and B co-occurring if they were independent
PMI measures (the log of) a ratio that says how far A and B are from being independent

There are lots of connections of information
theory to prediction
Rough intuition:
Something surprising \leftrightarrow less predictable \leftrightarrow more bits to store

Looking at All Pairs of Outcomes

- $P M I$ measures how $P(A, B)$ differs from $P(A) P(B)$ using a log ratio
- Log ratio isn't the only way to compare!
- Another way to compare:

$$
\left.\begin{array}{l}
\frac{[P(A, B)-P(A) P(B)]^{2}}{P(A) P(B)} \\
\text { Phi-square }=\sum_{A, B} \frac{[P(A, B)-P(A) P(B)]^{2}}{P(A) P(B)} \\
\text { Chi-square }=N \times \text { Phi-square }
\end{array}\right] \begin{gathered}
\text { between } 0 \text { and } 1 \\
0 \rightarrow \text { pairs are all } \\
\text { indep. }
\end{gathered}
$$

Phi-square is
$\mathrm{N}=$ sum of all co-occurrence counts (in upper right of triangle earlier)

Example: Phi-Square Calculation

Phi-square $=\sum \frac{[P(A, B)-P(A) P(B)]^{2}}{P(A) P(B)}$

Add these up to get: Phi-square $=0.6470 .$.

A, B Interpretation: neighboring pixels not close to being indep.

Back to Earlier Example

Often we know what kind of named entities are found
Example: Elon Musk and Tim Cook are people, Tesla and Apple are companies
\rightarrow can ask what people are related to what companies

Back to Earlier Example

	Tesla	Apple
Elon Musk	300	1
Tim Cook	1	195

PMI, phi-square, chi-square calculations done same way as before
Main things to calculate first:

P(Elon Musk, Tesla)
P(Elon Musk, Apple)
P(Tim Cook, Tesla)
P(Tim Cook, Apple)

P(Elon Musk)
P(Tim Cook)
P(Tesla)
P(Apple)

The math here is actually a bit easier to think about because the rows and columns aren't indexing the same items

Back to Earlier Example

Summary: Co-Occurrences

- Joint probability $P(A, B)$ can be poor indicator of whether A and B co-occurring is "interesting"
- Find interesting relationships between pairs of items by looking at PMI
- Intuition: "Interesting" co-occurring events should occur more frequently than if they were to co-occur independently
- In practice: some times it is helpful to generalize PMI and look instead at

$$
\begin{gathered}
\mathrm{PMI}_{\rho}(\mathrm{A}, \mathrm{~B})=\log _{2} \frac{\mathrm{P}(\mathrm{~A}, \mathrm{~B})^{\rho}}{\mathrm{P}(\mathrm{~A}) \mathrm{P}(\mathrm{~B})} \quad \begin{array}{c}
\text { Tune parameter } \\
\rho>0
\end{array} \\
\text { (we'll talk about parameter tuning later in the course) }
\end{gathered}
$$

Co-occurrence Analysis Applications

- If you're an online store/retailer:
anticipate when certain products are likely to be purchased/ rented/consumed more
- Products \& dates
- If you have a bunch of physical stores: anticipate where certain products are likely to be purchased/ rented/consumed more
- Products \& locations
- If you're the police department:
create "heat map" of where different criminal activity occurs
- Crime reports \& locations

Co-occurrence Analysis Applications

- If you're an online store/retailer:

re Examples of data to take advantage of:
- data collected by your organization
- social networks
- If - news websites
ar - blogs
re
- Web scraping frameworks can be helpful:
- Scrapy
- If . . Selenium (great with JavaScript-heavy pages) jurs
- Crime reports \& locations

Example Application of PMI: Image Segmentation

Phillip Isola, Daniel Zoran, Dilip Krishnan, and Edward H. Adelson. Crisp boundary detection using pointwise mutual information. ECCV 2014.

Example Application of PMI: Word Embeddings

Image source: https://deeplearning4j.org/img/countries_capitals.png

Continuous Measurements

- So far, looked at relationships between discrete outcomes
- For pair of continuous outcomes, use a scatter plot
Computing Improvements: Transistors Per Circuit

Image source: https://plot.Iy/~MattSundquist/5405.png

The Importance of Staring at Data

Correlation

Beware: Just because two variables appear correlated doesn't mean that one can predict the other

Correlation \neq Causation

Important: At this point in the course, we are finding possible relationships between two entities

We are not yet making statements about prediction (we'll see prediction later in the course)

We are not making statements about causality (beyond the scope of this course)

Causality

Studies in 1960's: Coffee drinkers have higher rates of lung cancer
Can we claim that coffee is a cause of lung cancer?
Back then: coffee drinkers also tended to smoke more than non-coffee drinkers (smoking is a confounding variable)
To establish causality, groups getting different treatments need to appear similar so that the only difference is the treatment

Establishing Causality

If you control data collection

Compare outcomes of two groups
Randomized controlled trial (RCT) also called A/B testing

Example: figure out webpage layout to maximize revenue (Amazon)
Example: figure out how to present educational material to improve learning (Khan Academy)

If you do not control data collection
In general: not obvious establishing what caused what

95-865 Outline

Part I: Exploratory data analysis
Identify structure present in "unstructured" data

- Frequency and co-occurrence analysis Basic probability \& statistics:
- Clustering
- Topic modeling (a special kind of clustering)

Part II: Predictive data analysis

Make predictions using structure found in Part I

- Classical classification methods
- Neural nets and deep learning for analyzing images and text

Carnegie Mellon University HenzCollege

Visualizing High-Dimensional Vectors

George Chen

The next two examples are drawn from:
http://setosa.io/ev/principal-component-analysis/

Visualizing High-Dimensional Vectors

How to
visualize these for comparison? $?_{800}^{800}$

Using our earlier analysis:
Compare pairs of food items across locations
(e.g., scatter plot of cheese vs cereals consumption)

But unclear how to compare the locations (England, Wales, Scotland, N. Ireland)!

The issue is that as humans we can only really visualize up to 3 dimensions easily

Goal: Somehow reduce the dimensionality of the data preferably to 1, 2, or 3

Principal Component Analysis (PCA)

How to project 2D data down to 1D?

Principal Component Analysis (PCA)

How to project 2D data down to 1D?

Simplest thing to try: flatten to one of the red axes

Principal Component Analysis (PCA)

How to project 2D data down to 1D?

Simplest thing to try: flatten to one of the red axes
(We could of course flatten to the other red axis)

Principal Component Analysis (PCA)

How to project 2D data down to 1D?

Principal Component Analysis (PCA)

How to project 2D data down to 1D?

Principal Component Analysis (PCA)

How to project 2D data down to 1D?

But notice that most of the variability in the data is not aligned with the red axes!

Principal Component Analysis (PCA)

How to project 2D data down to 1D?

Principal Component Analysis (PCA)

How to project 2D data down to 1D?

The idea of PCA actually works for 2D \rightarrow 2D as well (and just involves rotating, and not "flattening" the data)

Principal Component Analysis (PCA)

How to project 2D - data downto 1D?
How to rotate 2D data so 1st axis has most variance

The idea of PCA actually works for 2D $\rightarrow 2 \mathrm{D}$ as well (and just involves rotating, and not "flattening" the data)

2nd green axis chosen to be 90° ("orthogonal") from first green axis

Principal Component Analysis (PCA)

- Finds top k orthogonal directions that explain the most variance in the data
- 1st component: explains most variance along 1 dimension
- 2nd component: explains most of remaining variance along next dimension that is orthogonal to 1st dimension
- ...
- "Flatten" data to the top k dimensions to get lower dimensional representation (if $k<$ original dimension)

Principal Component Analysis (PCA)

3D example from:
http://setosa.io/ev/principal-component-analysis/

Principal Component Analysis (PCA)

Demo

